Skip to main content

BSc first year, Statistical Physics- Basics

STATISTICAL MECHANICS: A BRIEF HISTORY

Statistical mechanics was initiated in 1870 with the work of Austrian physicist Ludwig Boltzmann, much of which was collectively published in Boltzmann's 1896 lectures on gas theory. Statistical mechanics provided a molecular level interpretation of microscopic thermodynamic quantities such as eork, heat, free energy and entropy.

The study of statistical physics is mainly classified into categories. These are:
  1. Classical statistics or Maxwell-Boltzmann statistics.
  2. Quantum statistics or Bose -Einstein and Fermi-Dirac statistics.

STATISTICAL BASIS

Statistics is that branch of science which deals with the collection, classification and tabulation of numerical data as the basis of explanation, description and comparison of various phenomenon. When statistical concepts are applied to physics, the new branch that emerges is called statistical physics.

Statistical physics deals with macroscopic systems. i.e. the system consisting of a large number of individual particles such as atoms, molecules etc. It is not concerned with the behaviour of the individual particles of the system but takes into consideration the average or most probable properties of the system. As a system is a collection of a large number of particles of one type, we may have a system composed of atoms, molecules, protons, neutrons or electrons.

In certain cases, particularly where the system contains a large number of particles, ordinary laws of mechanics could not be used, as it is impossible to follow the motion of each particle. It is impossible to apply the ordinary laws of mechanics to a physical system containing large number of particles, particularly that of electrons. Such problems are however, successfully solved by statistical mechanics.

There are three statistics depending upon three different kinds of particles:

  1. Maxwell-Boltzmann statistics: This is applicable to the identical, distinguishable particles of any spin stop the molecules of a gas are the particles of this kind.
  2. Bose-Einstein statistics: This is applicable to the identical, indistinguishable particles of zero or integral spin. These particles are called bosons. Examples of bosons are Helium atoms at low temperature and the photons.
  3. Fermi-Dirac statistics: This is applicable to the identical, indistinguishable particles of half integral spin. These particles obey Pauli exclusion principle and are called fermions. Examples of fermions are electrons, protons, neutrons etc.

SOME BASIC TERMS OF STATISTICAL MECHANICS 

(1) System

In statistical mechanics, the term system is used to represent system (or collection) of large number of small particles( such as atoms or molecules) with one or more than one independent part.
For example, if we have to distribute some particles in the boxes or to distribute some energy(or momentum) in some states, then the particles and the boxes or the energy(or momentum) and the states together, is called the system.

(2) Statistical Ensembles

Statistical mechanics, Gibbs introduce the concept of ensemble. An ensemble is defined as a collection of large number of macroscopically identical but essentially independent systems. Macroscopically identical means that each of the systems constituting an ensemble satisfies the same macroscopic conditions   e.g., volume, energy, pressure, temperature, total number of particles etc. Independent systems means that the system constituting an ensemble are mutually non- interacting.

Kinds of Ensembles - According to Gibbs, there are three standard ensembles to which real experiments could be approximated. These are:
1. The Microcanonical ensemble
2. The canonical Ensemble, and
3. The Grand-canonical ensemble.

Microcanonical Ensemble- The micocanonical ensemble is a collection of systems having the same energy E, volume V and number of particles N.

Statistical physics
Microcanonical Ensemble
Canonical Ensemble- The canonical Ensemble is a collection of systems( independent) having the same temperature T, volume V, and number of identical particles N. 
In canonical ensemble, systems can exchange energy but not the particles. There is an impermeable but conducting wall between systems.

Statistical Physics
Canonical Ensemble
Grand-Canonical Ensemble- The Grand-canonical ensemble is a collection of systems having the same temperature T, volume V and chemical potential Āµ.
The walls are permeable and conducting. So both energy and particles can be exchanged.

Statistical Physics
Grand-canonical Ensemble

(3) Macrostate

In statistical mechanics, the macrostate of a system is the state which can be experimentally observed. Consider 4 different particles. Let them be a,b,c and d.
We have two similar open boxes(compartments).

The possible ways by which 4 particles can be distributed in two compartments are shown in the table.

Statistical physics
Distribution of 4 particles in 2 compartments
Thus, there are 5 different distributions (0,4), (1,3), (2,2), (3,1), and (4,0).
Each compartment wise distribution of a system of particles is known as a Macrostate.
In above example there are 5 macrostates - (0,4), (1,3), (2,2), (3,1), and (4,0).

In above example, we came to know that there are 5 macrostates for distribution of 4 particles in 2 boxes.
So if there are 'n' particles, which are to be distributed in 2 boxes, then there will be 'n+1' macrostates.


(4) Microstate

Let us take one Macrostate (1,3) from the above exmaple. It means that there is 1 particles in box 1 and 3 particles in box 2. The four particles are named as a,b,c and d.
Now the one which is in the box 1 can be a, b, c or d.
And the three particles which are in box 2 can be abc, bcd, abd and acd.

Hence microstate of the system is the state in which we consider the arrangement of the individual particles of the system. It can not be experimentally observed.

Possible arrangements for the above exmaple is given below in tables-

Statistical physics
Statistical physics
Table for number of microstates

Now from above table we can say that the total number of microstate for the system that we have taken in the above exmaple is 1+4+6+4+1=16

If there are 'n' particles , distributed in 2 boxes, then the number of microstates will be 2n.


(5) Thermodynamic Probability 

The number of microstates corresponding to any given macrostate is called its thermodynamic Probability. It is denoted by W(or Ī©).

Let us take the above given exmaple. We have to calculate thermodynamic probability for the Macrostate (1,3). In the above table we can observe that the number of microstates corresponding to the macrostate (1,3) is 4.
Hence the thermodynamic probability for the macrostate (1,3) is 4.

 Therefore,   W(1,3) = 4

If the total number of particles is 'n' and the macrostate is (r, n-r), then we will use combination to find the number of arrangements. i.e. ,

Statistical physics
Number of meaningful arrangements 

Now, the number of meaningful arrangements is equal to the number of microstates and the number of microstates is equal to thermodynamic Probability.

Therefore the thermodynamic Probability for the macrostate (r, n-r) can be given by
Statistical physics
Thermodynamic Probability for Macrostate (r, n-r)

(6) Constraints 

A set of conditions or restrictions that must be obeyed by a system are known as constraints.
Some typical constraints are-
1) Constant number of particles
2) Constant total energy
Which can be written in mathematical form as:
Statistical physics
Constraints 

(7) Accessible and Non- accessible  Microstates 

The micro States which are allowed under the given restrictions or constraints of the system are called accessible microstates.

On the other hand, the microstates which do not obey the given constraints are not allowed and they are called the non-accessible microstates.

PRINCIPLE OF EQUAL A PRIORI PROBABILITY

Suppose we toss a coin, then the Probability of head and tail is equal. We can assume before the experiment that the probability of coming head is equal to that of coming a tail.

The principle of assuming equal probability for events which are equally likely to occur is known as the Principle of equal a priori probability.                 
                                         Or 
The Probability of each of the accessible microstates corresponding to a given macrostate is same.

PROBABILITY OF A MICROSTATE

To find the probability of a microstate, we will use the principle of equal a priori probability. Hence probability of each accessible microstate is equal.

Probability of a microstate= 1/(total number of                                                                               microstate)
Let it be p, therefore
                    p= 1/(total number of microstates)

PROBABILITY OF A MACROSTATE 

The probability of a macrostate is defined as the ratio of (number of accessible microstates corresponding to the given macrostate) thermodynamic probability to the total number of microstates.
Let it be P, therefore
   
      P = (thermodynamic probability)/(total number of                                                                            microstates)
Or

P = W/p
 where W is thermodynamic probability of that macrostate and p is the probability of a microstate.

Click on the sidemenu and follow the blog!
Click on subscribe button for email subscription.

Enter your email address:

Delivered by FeedBurner
Share your feedback down in the comment box.
Thanks for reading!

Our facebook page- KnowPhysics facebook page
Our Quora space - KnowPhysics Quora

Comments

Post a Comment

If you have any doubts or suggestions please kindly share.

Popular posts from this blog

What is Dark Matter? Dark Matter in a Nutshell

Dark Matter in a nutshell  Introduction  The matter in which the modern scientists are higly interested in is the Dark Matter. So, what is Dark Matter? How it was formed? Who suggested the idea of Dark matter? How much amount of it is in the universe? Does it interact with other particles? What is Baryonic Matter? Can we detect dark matter or has anyone detected it till now? Let find out. Also subscribe the blog for email notifications. What is Dark Matter? Dark matter is a type of matter. Dark matter is called Dark because it does not appear to interact with electromagnetic field, which means it doesn't absorbs, reflect or emit electromagnetic radiations, and is therefore difficult to detect. Primary Evidences The primary evidence comes from the calculations done after studying about different galaxies in the universe.It was observed that may of the galaxies would fly apart, not move as they move or even do not form until and unless they contain a large

Nikola Tesla: Engineer and Inventor

The man who invented the 20th century is none other than Nikola Tesla. He is serbian-american inventor, electrical engineer, mechanical engineer and a futurist. Best known for Alternating current(AC) and electrical supply system. Nikola tesla  Born - 10 July, 1856. Died -  7 January, 1943 (83 years). Beginning with a quote of Nikola Tesla- " The scientists of today think deeply instead of clearly. One must be sane to think clearly, but one can think deeply and be quite insane. " Eidetic Memory  Tesla read many works. He can memorize complete books. He supposedly possessed a photographic memory. He was a polyglot, speaking eight languages: Serbo-Croatian, Czech, English, French, German, Hungarian, Italian, and Latin. Tesla related in his autobiography that he experienced detailed moments of inspiration. He often see blinding flashes of light before his eyes, also accompanied by visions. Many times the visions were related to the word or the idea that he was currently wor

Isaac Newton was an alchemist ? Was Isaac Newton searching for The Philosophers Stone ?

Many of you have an image of Sir Isaac Newton. You probably think Issac Newton as a person who contributed immensely in Physics through his laws of motion, gravitation which were the foundation of classical mechanics which we study today. Was Isaac Newton an alchemist? Or many of you think Isaac Newton as a mathematician who invented calculus(debatable). Or the person who proved the society wrong by proving that the light is made up of different colours, with his research on optics. But there is also an other side of his personality. He was heavily interested in alchemy and other occult practices. The world came to know this side of him by the unpublished papers written by him on these topics. Sir Isaac Newton was heavily involved in Alchemy . It is considered as an occult science. Alchemy is the medieval forerunner of chemistry, concerned with the transmutation of matter, in particular with attempts to convert base metals into gold or find a universal elixir. S